

Multipartite Bell-inequality violation using randomly chosen triads

Shih-Xian Yang¹, Gelo Noel Tabia^{1,2}, Pei-Sheng Lin¹ and Yeong-Cherng Liang¹

¹Quantum Nonlocality, Foundations & Information Group Department of Physics, National Cheng Kung University ²Center for Quantum Technology and Department of Physics, National Tsing Hua University

Pic from: https://openclipart.org/detail/142879/qubit-bloch-sphere

Shared Reference Frame in a Bell Scenario $\frac{1}{2}[\langle A_1B_1 \rangle + \langle A_2B_1 \rangle + \langle A_1B_2 \rangle - \langle A_2B_2 \rangle] \leq \sqrt{2}$

Random Measurement in a Bell Scenario

$\frac{1}{2}[\langle A_1B_1 \rangle + \langle A_2B_1 \rangle + \langle A_1B_2 \rangle - \langle A_2B_2 \rangle] = ?$

Probability of Violation $\sim \frac{\text{num.of simulations with violation}}{n}$

Improve the Chance Using Triad

Generalizing to *n* Parties

k-Producibility

Entanglement depth of k: k-producible but not (k-1)-producible

Probability of Certifying Entanglement Depth

n	3	4	5	6	7	8								
ED /#	4×10^{6}	5×10^{6}	2×10^{6}	4×10^5	4×10^5	2×10^{5}	k		3	4	5	6	7	8
2	99.99%	100%	100%	100%	100%	100%	1	•	1	1	1	1	1	1
3	45.89%	99.11%	100%	100%	100%	100%	2		$\sqrt{2}$	$\sqrt{2}$	$\sqrt{2}$	$\sqrt{2}$	$\sqrt{2}$	$\sqrt{2}$
4	_	22.54%	89.84%	-	99.26%	99.99%	3	}	-	2	2	$2\sqrt{2}$	$2\sqrt{2}$	$2\sqrt{2}$
5	_	_	8.83%	70.94%	_	_	4	Ļ	-	-	$2\sqrt{2}$	$2\sqrt{2}$	4	$4\sqrt{2}$
6	_	_	_	2.86%	47.84%	_	5)	-	-	-	4	4	$4\sqrt{2}$
7	_	_	_	_	0.82%	27.70%	E	5	-	-	-	-	$4\sqrt{2}$	$4\sqrt{2}$
8	_	_	_	_	_	0.22%	7	,	-	-	-	-	-	8

Visibility

$$E_l = vE_q + (1 - v)E_{wh}$$

 E_q : quantum point, E_{wh} : white noise, v: visibility, E_l : local point

Other Bell Inequalities in Tripartite Scenario

ED / F	2	7	8	22	24	26	27	33	39	40	42
2	99.99	55.84	100	100	100	96.36	99.99	100	100	99.67	100
3	45.83	6.82	4.97	0.18	16.63	4.00	0.65	62.02	39.32	2.28	3.08

Family 33:

 $0 \le 6 - E(A_1) - E(A_2) - E(B_1) + E(A_2B_1) - E(B_2) + E(A_1B_2) - E(C_1) + E(A_2C_1) - 2E(A_2B_1C_1) + E(B_2C_1) - 2E(A_1B_2C_1) - E(A_2B_2C_1) - E(C_2) + E(A_1C_2) + E(B_1C_2) - 2E(A_1B_1C_2) - E(A_2B_1C_2) - E(A_1B_2C_2) + 3E(A_2B_2C_2)$

C. Śliwa, Phys. Lett. A, vol. 317, no. 3, pp. 165 – 168 (2003).

Non overlapping k-producible Bounds

k	I _{S7n}	I _{FG4}	I _{FG5}	I _{FG6}	ED	<i>I</i> _{<i>S</i>74}	I _{FG4}	I_{M_4}
1	1	3	4	5	2	100	91.13	100
2	$\sqrt{2}$	3.6742	4.6188	5.5902	3	97.39	32.48	99.11
3	5/3	4.4037	5.1962	6.0977	4	27.29	1.30	22.54
4	1.8482	5	5.4037	6.1962				
5	1.9746	-	6	6.4037	<i>I</i> _{<i>S</i>7<i>n</i> =}	$= 2^{1-n}\Sigma_j$	$\vec{c} \in \{1,0\}^n E$	$Z_n(\vec{x}) - \vec{x}$
6	2.0777	-	_	7	$I_{FG_n} =$	= <i>E_n</i> (1,2	,,2)+	$- \circlearrowright' - E_r$

*I*_{*S7_n*: Y.-C. Liang *et al.*, Phys. Rev. L, vol. 114, p. 190401 (2015).}

*L*_{EC} : P-S. I in *et al.*, arXiv, no. 1903.02171, 2019.

Summary

- Correlations from random triad (optimized over all choices of 2 out of 3 measurements per party) will always violate a Bell inequality.
- Even randomly generated correlation features rather robust resistance to white noise
- Probability of certifying > 2-party entanglement is ~ 100% for N>2
- But probability of certifying genuine *N*-party entanglement decreases.