

APCWQIS 2014, Cheng Kung University, 12.12.2014

Hybrid quantum circuits: Superconducting circuits coupling to other systems

Ze-Liang Xiang

Collaborations:

- P. Rabl (Atominstitut, TU Wien)
- J. Q. You (Beijing Computational Science Research Center)
- ► X.-Y. Lü, S. Ashhab, F. Nori (RIKEN)

TU WIEN

TECHNISCHE UNIVERSITÄT WIEN Vienna University of Technology

What's hybrid quantum circuits?

"Macroscopic" system: Superconducting qubits

- Design flexibility
- Scalability
- Tunability
- Large coupling: fast
- Irreproducibility
- Short coherence time

Idea:uattenonly sthreulatistroto rleathphysidal phenomena

"Microscopic" system: Atoms, ions, spins

- Long coherence times
- Microwave to optical fields
- Reproducibility
- Nature given
- Small couplings: slow
- Limited scalability

Elements: Superconducting qubits

b Flux-driven loop (flux qubit)

c Current-driven junction (phase qubit)

d Energy levels of the flux-driven loop

J. Q. You & F. Nori, Phys. Today (2005), Nature (2011)

Elements: Atomic and spin qubits

I. Buluta et al., Rep. Prog. Phys. (2011); Z. -L. Xiang et al., Rev. Mod. Phys. (2013)

Hybrid quantum circuits: Indirect

theory: A.S. Sørensen et al., PRL (2004); L. Tian et al., PRL (2004); P. Rabl et al., PRL (2006)... exp: Y. Kubo et al., PRL (2011); D. Schuster et al., PRL (2010), R. Amsüss et al., PRL (2011)...

Hybrid quantum circuits: Direct

theory: D. Marcos et al. Phys. Rev. Lett. (2010); J. Twamley & S.D. Barrett, Phys. Rev. B (2012) exp: X. Zhu et al. Nature (2011)

Outline

• Quantum information processing with hybrid quantum circuits

• Spin squeezing in hybrid quantum circuits

• Summary

NV center

NV center (S=1 ground state):

$$H_{\rm NV} = \hbar D S_z^2 + \underbrace{\mu_B g_s B_{\rm stat}}_{\hbar \delta_B} S_z + \underbrace{\mu_B g_s B_{\rm osc}}_{\hbar g(a+a^{\dagger})} S_x$$

Hanson, R. and D. D. Awschalom, Nature (2008)

Hybrid superconducting circuits with NV Centers I

Hamiltonian:

$$H_{\text{tot}} = \sum_{j=M,C} \omega_j \tilde{\sigma}_j^+ \tilde{\sigma}_j^- + \omega_{\text{NV}} b^\dagger b$$
$$+ g \left(\tilde{\sigma}_{\text{M}}^+ b + b^\dagger \tilde{\sigma}_{\text{M}}^- \right) + J_t \left(\tilde{\sigma}_{\text{M}}^+ \tilde{\sigma}_{\text{C}}^- + \tilde{\sigma}_{\text{C}}^+ \tilde{\sigma}_{\text{M}}^- \right)$$

Resonant interaction case:

$$H_{\rm tot}^R = g \left(\tilde{\sigma}_{\rm M}^+ b + b^{\dagger} \tilde{\sigma}_{\rm M}^- \right) + J_t \left(\tilde{\sigma}_{\rm M}^+ \tilde{\sigma}_{\rm C}^- + \tilde{\sigma}_{\rm C}^+ \tilde{\sigma}_{\rm M}^- \right)$$

Dispersive interaction case:

$$\begin{split} H_{\rm tot}^D &= \Delta_{\rm NV}' b^{\dagger} b + \Delta_{\rm C}' \tilde{\sigma}_{\rm C}^{\dagger} \tilde{\sigma}_{\rm C}^{-} + \Lambda \left(\tilde{\sigma}_{\rm C}^{-} b^{\dagger} + \tilde{\sigma}_{\rm C}^{\dagger} b \right) \\ \Delta_{k}' &= \Delta_{k} + \frac{g^2}{\Delta_{k}} \\ \Lambda &= \frac{g J_t}{2} \left(\frac{1}{\Delta_{\rm NV}} + \frac{1}{\Delta_{\rm C}} \right) \end{split}$$

X. -Y. Lü, Z. -L. Xiang et al., Phys. Rev. A (2013)

Fidelity in different interaction cases

Dispersive interaction case

Fidelity with different distances

The fidelities of quantum storage versus (a,c) time t and (b,d) the distance. The black dashed and red solid curves in (a,c) correspond to the single flux-qubit–NVE system and the proposed system in this paper.

Hybrid superconducting circuits with NV centers II

Z. -L. Xiang et al., Phys. Rev. B (2013)

Fidelity of quantum state transfer

Fidelity is $|\langle \psi_T | \psi(t) \rangle|^2$

The fidelity of quantum state transfer vs the dimensionless time γ t. The red and black curves correspond to the coupling strength in the ultrastrong-coupling regime and the strong-coupling regime, respectively.

While the coupling strength is increasing, the fidelity is decreasing. After the large detuning condition is broken, the fidelity rapidly reduces to a low level, because high order terms in approximations cannot be neglected.

Can this hybrid circuit do anything else?

Quantum state transfer Quantum storage and memory

Squeezing!

Spin squeezing in hybrid quantum circuits

When $\Delta \gg g$, such a system can involve nonlinear property (λJ_z^2) .

Mean-spin-direction (MSD) of the ensemble

Define

$$\alpha \equiv \langle a \rangle, \quad \beta \equiv \frac{\langle J_{-} \rangle}{N/2}, \quad \gamma \equiv \frac{\langle J_{z} \rangle}{N/2}$$

The master equation with the photon decay

$$\dot{\rho} = -i[H,\rho] + \kappa(2a\rho a^{\dagger} - a^{\dagger}a\rho - \rho a^{\dagger}a)$$

With the mean value approximation, we can obtain the dynamical equations of MSD.

$$\begin{split} \dot{\alpha} &= -(\kappa - i\Delta)\alpha - i\frac{g}{\sqrt{N}}\frac{N}{2}\beta, \\ \dot{\beta} &= 2i\frac{g}{\sqrt{N}}\alpha\gamma, \\ \dot{\gamma} &= i\frac{g}{\sqrt{N}}(\alpha^*\beta - \alpha\beta^*). \end{split}$$

Spin squeezing

Because of $|J| \gg 1$, we can make the Holstein-Primakoff transformation:

$$J'_{+} = \sqrt{N}b, \quad J'_{-} = \sqrt{N}b^{\dagger}, \quad J'_{z} = \frac{N}{2} - b^{\dagger}b,$$

Spin squeezing with changing MSD

In the rotating frame of the MSD, we can obtain the effective Hamiltonian

$$H_{\text{eff}} \approx -\frac{g^2}{N\Delta} (\sin^2 \theta J_x'^2 + \cos^2 \theta J_z'^2)$$
$$= -\frac{g^2}{4\Delta} \left[\sin^2 \theta (b+b^{\dagger})^2 + \cos^2 \theta (N-2b^{\dagger}b)^2/N \right]$$

Here, $\theta(t)$ is time-dependent. By using the following master equation, we can numerically calculate the dynamics of this hybrid quantum system.

$$\dot{\rho} = -i[H_{\text{eff}}, \rho] + \Gamma \left(2B^{\dagger} \rho B - BB^{\dagger} \rho - \rho BB^{\dagger} \right),$$

where $\Gamma = \frac{g^2}{\Delta^2} \kappa$ (the photon-induced decay),

$$B = \cos^2 \frac{\theta}{2} b - \sin^2 \frac{\theta}{2} b^{\dagger}.$$

Spin squeezing: ideal case

Spin squeezing parameter:

$$\xi^2 = \frac{N\Delta J_{\vec{n}\perp}^2}{|\langle \vec{J} \rangle|^2} \approx 2\langle b^{\dagger}b \rangle - 2\sqrt{\langle b^2 \rangle \langle b^{\dagger}^2 \rangle} + 1$$

$$t_{\min} \approx \frac{\Delta}{g^2} \left[(3/\epsilon)^{\frac{1}{3}} - (\epsilon/3)^{\frac{1}{3}} \right]$$

$$\xi_{\min}^2 \approx (3\epsilon^2)^{\frac{1}{3}} - (\epsilon^4/3)^{\frac{1}{3}} + O(\epsilon)^{\frac{8}{3}}$$

$$\epsilon = \kappa / \Delta$$

M. Kitagawa & M. Ueda, Phys. Rev. A (1993)

Spin squeezing: inhomogeneous broadening

Inhomogeneous broadening

 $\rightarrow t < T_2 \rightarrow$ The minimal value of spin squeezing parameter 10^{1} optimize over detuning. g = 25 MHz, 0.8 $\kappa = 0.5$ MHz. In experiment, $g, \kappa \to \text{fixed},$ 0.70.6 $\Delta \rightarrow$ tunable. $\Delta \rightarrow \text{tunable.}$ $g = 25 \text{MHz}, \quad \kappa = 0.25 \text{MHz}, \quad \overset{\textcircled{s}}{\stackrel{\texttt{L}}{=}} 10^{0}$ 0.5 0.4 $N \approx 10^{12}, \quad \Delta = 100 \text{MHz},$ 0.3 $T_2 = 1 \mu s, \quad \xi^2 \approx 0.0347$ 0.2 0.1 These parameters can be 10^{-1} achieved by using current 100 200 300 400 500 experimental techniques. Δ (MHz)

Y. Kubo et al., PRL (2010); R. Amsüss et al., PRL (2011); S. Putz et al., Nature Phys. (2014)

Spin squeezing of an inhomogeneous spin ensemble?

Summary

- Hybrid quantum circuits are to combine different systems and build new hybrid quantum structures for exploring new applications of quantum systems.
- Hybrid quantum circuits with NV centers and superconducting circuits can well perform in quantum storage and processing.
- The hybrid quantum circuits can also be used to explore the spin squeezing.

Thank you !