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About universal quantum simulation
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Goal: Solve Schrddinger’'s Equation

d . A
ia‘w(t» = H(t)‘w(t», H = H" = Unitary dynamics
B Solve state [¢(7)) as a function of ¢.
B Determine the spectrum of H.
M Find eigenvectors of H, e.g. ground state.
y(1)).

B Applications: Chemistry, Physics, coupled
linear equations, differential equations, ....

A

0,

B Estimate mean of some operator (p(t)
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Solve with (classical) computer

B Diagonalize the Hamiltonian

B Integrate Schrodinger’s equation
® Runge-Kutta
® Magnus expansions
® Product formulee (e.g. Forest-Ruth and Trotter-Suzuki)

B Q Monte Carlo simulations
® Stochastic Green Function

e Variational, Diffusion or Path-Integral Monte Carlo, ...
Left Block Right Block

(0000000000 L(4) + e+ R(5)
renormalization 0000000008 i)k

group [Ty YT wywirewy L(6) + o + R(3)

B Density matrix
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Simulating Physics with Computers

Richard P. Feynman
Depariment of Physics, California Institute of Technology, Pasadena, California 91107

Received May 7, 1981

1. INTRODUCTION

On the program it says this is a keynote speech—and I don’t know
what a keynote speech is. I do not intend 1n any way to suggest what should
be in this meeting as a keynote of the subjects or anything like that. I have



5. CAN QUANTUM SYSTEMS BE PROBABILISTICALLY
SIMULATED BY A CLASSICAL COMPUTER?

Now the next question that I would like to bring up is, of course, the
interesting one, i.e., Can a quantum system be probabilistically simulated by
a classical (probabilistic, I'd assume) universal computer? In other words, a
computer which will give the same probabilities as the quantum system
does. If you take the computer to be the classical kind I’ve described so far,
(not the quantum kind described in the last section) and there’re no changes
in any laws, and there’s no hocus-pocus, the answer is certainly, No! This is
called the hidden-variable problem: it is impossible to represent the results
of quantum mechanics with a classical universal device. To learn a little bit
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Computational Complexity Classes

B Decision problem: yes/no answer.

PSPACE

B Algorithm: procedure using tool set
to solve decision problem. I

B Complexity: characterized by how PP
cost of limited resources (e.g. disk /
space, memory, time) scales with BQP NP
problem size (e.g. bits to specify \
input) in order to solve problem. BPP

problems solvable on a Turing

B PSPACE is set of all decision \
machine with polynomial-space. P
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Interpreting Feynman’s conjecture

B Complexity of Heisenberg and Schrodinger g-
mechanic techniques are in EXP.

B Feynman path integral method is in PSPACE.

B BQP is set of problems solved by a q computer
(e.g. Deutsch’s 1985) in polynomial-time with
“yes” error no larger than 1/3.

B Feynman’s says “certainly” BPP C PSPACE.
B However, we only know that BPP C PSPACE.

B Proving Feynman'’s claim would be highly

significant in computer science.
‘ Qﬁlélll';tﬁ m Ilnfor‘.maﬁ.on IS'cicnge
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Can we simulate any Hamiltonian?

B Find solution s, to problem x by simulating

H-= E( O,Sx><x,0 0,x><sx 0 )

B Seems too easy to solve any problem so we
impose Childs’s rules: H is

e asum of H;'s each acting on O(1) qubits, or

+

® is a (ix) commutator of two simulatable H’s, or

e is related to a simulatable H by an efficiently
implementable unitary conjugation, or

® is sparse and efficiently computable.
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Problem

Construct etficient q algorithm for accurately
simulating evolution of general q systems.

@ efficient = polynomial overhead

® algorithm - instruction set for q computer
@ accurate - bounded error

® isolated & q 2 Hamiltonian evolution

® general > Hamiltonian held by oracle
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From continuous to discrete time

Lie - Trotter product formula:

eit(A+B) itA I n izB/n)”

>(€ C
71 —>00

Texp

t+At m Nexp
—if EHj(u)du)znexp(—iqu(tq)Atq)
=1

t o j=1 q
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Q Computing & Feynman’s Conjecture

B [ loyd (1996): proved Feynman’s conjecture:
e Cost for N iterations: poly(r,m,n).
e Assumed tensor product structure.
e Time-independent Hamiltonian.

e Runtime is O(#?) and Space cost (register) is O(n).

expi—it mlﬁj i = (nexp{—l— j }) + E[H], ]7 + Error

J>J'
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Q State Generation

B Aharonov & Ta-Shma (STOC 2003)

B Motivated by claims of efficient adiabatic q
algorithms to solve NP-Hard problems.

B Raises questions about which q states can be
efficiently generated.

B Equivalent to statistical zero-knowledge (SZK)
complexity class of problems.
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Sparse Hamiltonian Lemma

B Hamiltonian is d-sparse
If Hon n qubits 1s row - sparse

(# non - zero entries is poly(#n) - bounded)

and row - computable

(efficiently computable list of nonzero H,; in row i)

A

with ||H|| < poly(n), then H is simulatable.

B Runtime € O(n9d4 /8),0(t3/2).
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Time and space for time-independent H

B Aharonov & TaShma 2003
o T€Ond*¥/e) & S € O(n).
B Childs 2003

e symmetrized Lie-Trotter formula
e Improved (Linial) graph coloring algorithm
o TE O(d+Wn2t2Ne) & S € O(n).

B Berry, Ahokas, Cleve & BCS 2007

® [ie-Trotter-Suzuki

® deterministic coin tossing approach to graph colouring
o T € O(d*°Wlog*n t*1/2k/el?k) & S € O(nlog*n).



Approximate evolution as ordered product

H = zﬁj,U. = exp(—iﬁjt/h),

U = exp(—iﬁt/h) ~ ﬁUjv .
v =]

There are m types (colours) of Ubut a sequence
of N U;. We refer to j as the colour index.
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Efficiently simulating diagonal H (Childs)

d(a) = {a|H|a)€{0,1}" can be efficiently computed classically.

a> T r e_id(a)t|a>

O> — exp(—it|1><1|) f— F— | O>
0) — exp(=2i1)1)) —— —10)
. d . d

0) el ) L o)




Simulating one-sparse H evolution

B No more than one nonzero element in each
row or column of the Hamiltonian matrix.

B Use the Childs-Cleve-Deotto-Farhi-Gutman-
Spielman (CCDFGS03) [STOC 2003] circuit to
simulate one-sparse Hamiltonian evolution.

B [f H is expressed as a sum of one-sparse
Hamiltonians H;, with j the colour index, then
we can use the CCDFGS03 circuit to
implement the Hi-generated evolution U,.

| ‘ Quantum Information Science
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The Aharonov-TaShma circuit

B Input state [v)= Y0,
B For given colour j,,, implement evolution U,
B Clean up ancillee for next step.

B Repeat process to implement the Lie-Trotter-
Suzuki approximation of U.
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Detailed circuit for evolution

Yol e
); H
OO TR @) [[R(/2) [|R (nf2)] Ri-Afg(H”T RU2IHIAYFI R(AQ(H)| R (r/2) || R (-m/2) R (-2 [~
P — P

&
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Volume 146, number 6 PHYSICS LETTERS A 4 June 1990 |

FRACTAL DECOMPOSITION OF EXPONENTIAL OPERATORS
WITH APPLICATIONS TO MANY-BODY THEORIES AND MONTE CARLO SIMULATIONS

Masuo SUZUKI
Department of Physics, Faculty of Science, University of Tokyo, Bunkyo-ku, Tokyo 113, Japan

Received 6 February |1990; accepted for publication 28 March 1990
Communicated by A.R. Bishop

A new systematic scheme of decomposition of exponential operators is presented, namely exp[x(A+B) ] =5,(x)+0(x™*)
for any positive integer m, where S, (x)=e"e™¥e™Me® o4 A general scheme of construction of {1} is given explicitly. The
decomposition exp[x(A+B) ) = [SL(x/n) 1"+ 0(x™* ' /n™) yields a new efficient approach 1o quantum Monte Carlo simulations.

exp[x(A + B)] =S (x)+ 0(xm+1),
Sm(x) _ etlAetzBet3Aet4B .. 'GIMA ]

exp|x(A+B)| =[5, (x/n)] + O(x’"+1 /nm).




Hamiltonian H generates unitary: break up

B H as sum of local Hamiltonians H = E H.
i=1

B Symmetrized (m=2) Trotter:
Ht _( aiH112r aiH2tr aiH112r\"
o clil=(e!1ler elt2r gFN12rY " H=H +H,.

B Number of exponentials for g computer N « 32,



Hamiltonian H generates unitary: break up

B H as sum of local Hamiltonians H = ﬁ H.
B Symmetrized (m=2) Trotter: |
o cillia(it\/2r gilatlr 112 F H,+H,
B Number of exponentials for g computer N « /2,

O Suzuki’s generalization of Trotter formula:

H Hi\/2 H oHir M2 (4 12k 1))1

f=m

Sok (A [SQL o (pr)]? Sox— 2((1 — 4pi) M) [Sor—2(peA)]?

N

5 terms




Hamiltonian H generates unitary: break up

B H as sum of local Hamiltonians H = ﬁ H.
B Symmetrized (m=2) Trotter: |
o cillia(it112r giliytlr giH\2rY | [l H,+H,
B Number of exponentials for g computer N « /2,

O Suzuki’s generalization of Trotter formula:

H Hi\/2 H oHir M2 (4 12k 1))1

f=m
Sok (A [SZ‘L o (pr)]? So— 2((1 — 4p1) ) [Sok—2 (pr)]?
O Suzukl proves for small A:

exp (ZH )\) Sork(N)|| € O(IAP**T)




Strict bound on Suzuki formula (BACS)

For ¢.=]](1-4pr.) and r=txmaxHH.H
J

'=)

12m5*'qr/r=1,

k=1 2k+1 e<l=< 4m5k_1qkr
3(2mstgr) T (2k +1)16%

2 (2k+1)1r%

exp(—itgl‘li) - [52 [-i7) ]

) 2 I,’;E-'.t'
Wi O e | 1+1/2k | =
ith r = [(2177,0 axT) [(2k+ l)!eJ

Lemma: (2m5k_1qk'v)2k+1

(2k +1)177

<

for €<1< (4mb5* 1qu7)/[(2k +1)!'62*] the Lemma’s constraints are
satisfied, and the error does not exceed &. The number of exponentials in S,,(A)
does not exceed 2m5%!r so using this value for r implies the result.



Simulation cost is almost linear in time

1+1/2k

m52k(mqk‘v)
2[(2k +1)te]

Theorem: |N = o7

1
Optimize k: k = > \/ log. (m_r)
£

Then N = 4m’texp [2\/log5 (m1: / 8)]
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BACS: Cannot be sublinear in ¢

Theorem: For all positive integers N there exists a row-computable 2-sparse
Hamiltonian H such that simulating the evolution of H for scaled time 7 = 7N /2
within precision 1/4 requires at least 7/27 queries to H.

X= 0o 1 1 0 1 0 _0 1

17y 18 [o8)

0.5)

04) 34

/2

/4

t=0
0.1)

1.1
| } |1,|:|> |G,U>




Graph for sparse H (Cleve’s slides)

Connect x to y, (x) with
an edge of weight o, (x)




Symmetrically labeled graphs
1 C\Sl L )2

o) | <o

1 2
(O (L
2 1 5 5 1
(O o O
1 ) 3 2
O O > :

gl the University of Calgary

‘ngﬁfﬁﬁ?f Information Science




Non-symmetric case
Modify labeling to be symmetric (with an overhead cost)

®— b@ with x <y

We now have d? labels

, b , b :
@(a )12 )@ instead of d labels, but
a symmetric labeling

1,2
Example:(1 ) Y ( 1 ) withz <y
1 3
© (1,3)
YD wity<w



Graph with monochromatic paths
. 1 C\z 1
ol A TSO>S0

3
10 O
3 3

To break up the paths, we increase the number of colours

Quantum Informahon Scxence
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X<y<z<w “Deterministic coin-
tossing” [Cole & Vishkin '86]

)
&)
)
&)

)
S)
=
\J
k‘

» /@ y' € (i,y;), where i=min{j:y;=z;}

, 010

| '

@ G Example: y=01100101
(a,b, |z > |z’ z=01001101

D ® Then y'=(010,1)
(a,b, |w | W'

Note: still a valid coloring!

d*2"  n log(n)+1 xX'=2y' & y'2z' & =W




Breaking up the paths Il

d? 2"

color

sity of Calgary

O(log*(n))
®) @) (%) iterations
@;/:@;/:@;/:
@y _— @y _— @y _ )
© o o _—
n log(n)+1 log(log(n)+1)+1
thfantum Infonhbtﬁm Science  DItS

<\ )
00—

)
&)

-
-
-

-
-
-

=

-
-
-

4\

-
-
-

6 elements

- Just 5 iterations for 7 < 10"



Theorem: The number of black-box calls for given k is

Nip, € O ((log" n)d*52(d2gir) /2 /[(2k + 1)1 /%)

with log™ n = min{r| logg'") n < 2} (the (™ indicating the iterated logarithm).

Sketch of Proof:

# of H’s is m=6d". Need to call the black-box O(log™n) times for each H,

Substituting into theorem for upper bound on N, gives result.
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Further reducing time cost

B Childs & Kothari 2010: deterministic coin-
tossing colouring of vertices rather than edges,
decompose H into a sum of d galaxies (disjoint
union of star graphs)

o T €& O([d3+d210g*n] t1+1/2k/£1/2k)
e S € O(nd+nlog*n).

B Berry & Childs 2010: Q walk & H-eigen
estimate replaces Lie-Trotter-Suzuki formula.
Transform to H-eigenbasis, evolve then revert
to computational basis.

o TEO(|H|, dte1?).

max



INTEGRATINGdSCHRC")DINGER
EVOLUTION i |u(1)) = A(1)jw(2))
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VOLUME 79, NUMBER 13 PHYSICAL REVIEW LETTERS 29 SEPTEMBER 1997

Simulation of Many-Body Fermi Systems on a Universal Quantum Computer

Daniel S. Abrams
Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

Seth Lloyd

Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachuserts 02139
(Received 7 November 1996)

We provide fast algorithms for simulating many-body Fermi systems on a universal quantum
computer. Both first and second quantized descriptions are considered, and the relative computational
complexities are determined in each case. In order to accommodate fermions using a first quantized
Hamiltonian, an efficient quantum algorithm for antisymmetrization is given. Finally, a simulation of
the Hubbard model is discussed in detail. [S0031-9007(97)04120-3]

- /\+/\
Hubh = tE( o ]G+C CZO)+UEVZ n

(i,j)o
N N
Bose-Hubb — C;C;+C;C;)+ > n\n,—l)-u,n,.
(i.j) i=1 i=1
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VOLUME 79, NUMBER 13 PHYSICAL REVIEW LETTERS 29 SEPTEMBER 1997

Simulation of Many-Body Fermi Systems on a Universal Quantum Computer

Daniel S. Abrams
Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

Seth Lloyd

Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachuserts 02139
(Received 7 November 1996)

computer remain daunting [12—-15]. But the problem of
simulation — that 1s, the problem of modeling the full time
evolution of an arbitrary quantum system — is less tech-
nologically demanding. While thousands of qubits and
billions of quantum logic operations are needed to solve
classically difficult factoring problems [16], it would be
possible to use a quantum computer with only a few tens
of qubaits and a few thousand operations to perform simula-
tions that would be classically intractable [17]. A quantum
comvputer of this scale appears to be a realistic possibility.



Quantum materials
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Examples of spin systems for simulation

Hy. =) 2,®Z, +BEX
(i)

Hey=J )X, ®X,+J, )Y, ®Y,
(i) (i)

Hysonrers = 2 X, O X, +I Y Y, QY +J Y Z,®Z, +BEX.
(i) (i) (i)
Hubbard = Z‘E( ioC ],a ],a 10)+UE m lw

(i.j)o

N N
Bose Hubbard ~— C C +C C 2 ni ni - —M ni‘
1 :




Heisenberg Model Hamiltonian Matrices

n—1

_ ®i-1 ®n—1-i
H = ZI g, 0,1

1

The number of non-zero elements in a nearest neighbor 1-D Hamiltonian is proportional

to the number of qubits in the chain:

i

=4

4.d

n:

=2

2.d

n:

=3

3.d

n:




Kitaev’'s honeycomb lattice y

N T/ ?
7 \/

- -J. EXX ~J, EYY ~J. Ezz

,\/



Analogue vs Digital Q Simulator

B Analogue Q Simulator

e designed to evolve similarly to system being simulated
® e.g. q magnetism or superfluidity.

B Digital Q Simulator

® universal or purpose-built programmable q computer

e Simulate dynamics via a sequence of Hamiltonian-
generated evolutions.
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Algorithm for many-body q simulation |

B [nput: Time ¢, tolerance ¢ and Hamiltonian

H(n) _ Ea(jn)h(jn)’h(jn) = ®Z=IE‘(]{?’
j=1

o | 0 1 (0 -1 0 1)
= el X = Y =i Z =
" 1 0 1 0 1 0)

(Total number of non - identity operators in each

Y

summand 1s at most » - independent constant £.)

B Output: Q Circuit



Algorithm for many-body q simulation Il

B Expressed as string of bits
[ﬁ(”)] = {aj,lj,Sj;j = 1,...,j},
1, = (lXj ,lyj ,le ) gives number of each type of Pauli operator,

S. = (ij Sy ,Szj) comprises vectors of strings corresponding

to positions of each of the Pauli operators.

This string is poly(n) in size.

' Quantum Information Science
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Honeycomb model as an example

B One-site interaction Hamiltonian

H" =X @17 +2(YRI) +4ZR® I ®Z

B Bit-string representation

a=(1,2,4),
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Q Circuit component for Pauli evolution

0y —| H ™ * H—
0) —[ S8 H |-+ iy 52—
0)
0> v, D e—iq)Z "(H)

exp(-igX Y ®I® Z)
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Electrons

Atoms

“Quantum Simulators”, Science 326, 108 (2009).

]

Buluta and Nori

al the University of Calgary
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nature
ARTICLES phySiCS

PUBLISHED ONLINE: 14 MARCH 2010 | DOI:10.1038/NPHYS1614

A Rydberg quantum simulator

Hendrik Weimer'*, Markus Miiller?, Igor Lesanovsky?%3, Peter Zoller? and Hans Peter Biichler!

A universal quantum simulator is a controlled quantum device that reproduces the dynamics of any other many-particle
quantum system with short-range interactions. This dynamics can refer to both coherent Hamiltonian and dissipative
open-system evolution. Here we propose that laser-excited Rydberg atoms in large-spacing optical or magnetic lattices provide
an efficient implementation of a universal quantum simulator for spin models involving n-body interactions, including such
of higher order. This would allow the simulation of Hamiltonians of exotic spin models involving n-particle constraints, such
as the Kitaev toric code, colour code and lattice gauge theories with spin-liquid phases. In addition, our approach provides
the ingredients for dissipative preparation of entangled states based on engineering n-particle reservoir couplings. The basic
building blocks of our architecture are efficient and high-fidelity n-qubit entangling gates using auxiliary Rydberg atoms,
including a possible dissipative time step through optical pumping. This enables mimicking the time evolution of the system by
a sequence of fast, parallel and high-fidelity n-particle coherent and dissipative Rydberg gates.
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NATURE PHYSICS por:10.1038/NPHYS1614

2 Control atom
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Universal Digital Quantum Simulation

with Trapped lons

B. P. Lanyon,»* C. Hempel,™Z D. Nigg,? M. Miiller,™* R. Gerritsma,*? F. Zihringer, -2
P. Schindler,? ). T. Barreiro,2 M. Rambach,? G. Kirchmair,2 M. Hennrich,? P. Zoller,*3

R. Blatt,>? C. F. Roos'?

A digital quantum simulator is an envisioned quantum device that can be programmed to efficiently
simulate any other local system. We demonstrate and investigate the digital approach to quantum
simulation in a system of trapped ions. With sequences of up to 100 gates and é qubits, the full
time dynamics of a range of spin systems are digitally simulated. Interactions beyond those naturally
present in our simulator are accurately reproduced, and quantitative bounds are provided for the
overall simulation quality. Our results demonstrate the key princples of digital quantum simulation and
provide evidence that the level of control required for a full-scale device is within reach.

lthough many natural phenomena are ac-
Au::urzu:eljfr described by the laws of quan-
tum mechanics, solving the associated

equations to calculate properties of physical sys-
tems, i.e., simulating quantum physics, is in gen-

eral thought to be very difficult (7). Both the
number of parameters and differential equations
that describe a quantum state and its dynamics
grow exponentially with the number of particles
involved. One proposed solution is to build a

highly cor
ficiently p
quantum !
several dif
ing the an
gous mode
the state a

and those
i1s dedicate

problems.

A digi
precisely ¢
tem on wh
(gates) can
(17). The:

Ynstitut fiir
reichische Ak
A-6020 Innsb
versity of Ini
Austria. *In:
Innsbruck, Te

*To whom ¢
ben.lanyon@
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Time-dependent Hamiltonian evolution

For H = EH ;- H,:R—C"™" P -differentiable, construct

j=1
t+At

U(t,t+ At) = Texp(—i f H(u)du | as a product of N exponentials

exp(—iH ; (tp )Atp) within tolerance € of U (t,t + At), and find an

upper bound for N.
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Theorem

Each H,; : R — C" x C" is 2k - differentiable on [7,t + At].

(
Sur

A,, = sup sup

p=01...2k| u€[re+Ar]\ “_

\
For ¢ < (5/3)k‘1A2kAt,sp _

L)
p+l
/

1

4 — 41/2p+1 ’

N = (2m-1)5""r = (2m - 1)5k-1[2(2k .5 /3)"‘1AZkAt)M/Zke‘”z".‘
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Suzuki iteration

U+ Mo+ [1=5,A2) = U, (u+[1-s, |Mopu+ [1-25, ]AR)

XU, (w+[1-2s, |Mopu+ 25,AM)U, (+ 25, Ah i+ 5,AA)U, (10 + 5,A%,),

U,(1+AAu) (]Iillexp[A (u+ A/\/z)AA/z])(]fIm exp| A, (u+ AA/Z)AA/Z]).

Problems arise for functions that are not smooth in time.

nelituls for
Quantum Information Science
g1 the University of Calgary




Problems with Lie-Trotter-Suzuki
B Suzuki’s bound fails for non-analytic H

B Uses time-derivative super-operator
¢ =|U(AL,0) - U,(AL0) \2 JAX H (L) = X’ sin(1/ W)LH, (M) = cos(A)]

10° 107

¢ for Ha{u] vs AL
T T

 for Hh(u} vs AL
! !

1
i

10°




Lemma (no time-derivative superoperator)

T(1) =1, T,..(1) = T, (1) H() + T, (1),

nax |7, (u) A"

(P +1)!

o (=iAt)'T
U(t,t+At)—E( )T
p=0 P!

nelituls for “ 9
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Optimal choice of k

N.,, = 6mAAt exp[2\/ logs(AAt/¢) ]
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Method

B Taylor expansion for U to O(A#?<*1)
B Induction: U, equals U to order At?<*1

B Avoid Suzuki’'s time-derivative superoperator

U_iwf@

e T.(1)H(t)+ 9,T: (1)

Tea(7)

B As Taylor expansions for U and U, are
identical for (At)?, the norm of the difference
is bounded by the sum of terms O((At)?*1).

B Triangle inequality bounds norm of difference.



Theorem 1 Let H(t) = > | H;(t) where each H;(t) is differentiable 2k times on

J:

(e, i+ AN Furthermore let the timescale A satisfy,
A= sup max |0 H (t)||/ (@D

AE [, u+AN] q=0...2k,7=1...m

€ < (9/10)(5/3)*AAX and max,~, ||U(z,y)|| < 1, then a decomposition U(j+ AN, ju)

can be constructed such that ||\U — U|| < € and the number of operator exponentials
present in U, N, satisfies

o\ k 1/2k
N < {SmAA/\k (2?0) (A?/\) } .
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Method

B Compute the Taylor Series of U and Uk
to order ANk

B Show that Suzuki’s choice of s, causes the
error term to be 0, if Taylor series exists.

B tis not needed in our analysis.
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Steps to prove error bounds

B Compute Taylor expansion of U(t,t+At) as
powers of At with U(t,t+At) computed
iteratively for k the index of the iterant.

B # terms for Taylor expansion of U, is
exponential in k for truncation at (4t)! for some
| so we prove instead that

U -U,| € or*).
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Steps to prove error bounds

B As Taylor expansions for U and U, are
identical for (At)%, the norm of the difference
is bounded by the sum of terms O((At)**1).

B Use the triangle inequality to bound the norm
of the difference.

B Obtain error as a function r intervals.
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Solving linear systems of equations is a common problem that arises both on its own and as a subroutine
in more complex problems: given a matrix A and a vector b, find a vector ¥ such that A¥ = b. We consider
the case where one does not need to know the solution X itself, but rather an approximation of the
expectation value of some operator associated with ¥, e.g., ¥ M¥ for some matrix M. In this case, when A
is sparse, N X N and has condition number «, the fastest known classical algorithms can find x and
estimate X' M¥ in time scaling roughly as N./k. Here, we exhibit a quantum algorithm for estimating
¥ M whose runtime is a polynomial of log(N) and «. Indeed, for small values of « [i.e., poly log(N)], we
prove (using some common complexity-theoretic assumptions) that any classical algorithm for this
problem generically requires exponentially more time than our quantum algorithm.

N
A% =bb > |b) = Y bli)e™|b)....
i=1
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HHL Strategy

B Use (modified) Kitaev’s eigenvalue estimation
algorithm for Hermitian A.

B Prepare and inject | b> as input.

B Then approximate | b> in A-eigenbasis { | u;>}
with corresponding eigenvalues {A}.
B Requires O(nlogn) steps.

B Kitaev q algorithm output: eigenvalues and
corresponding eigenvectors of A.

B Then controlled rotations on | b> and then

undo to get | x>.
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“I [hypothesize| that ultimately
physics will not require a
mathematical statement, that in the

end the machinery will be revealed,
and the laws will turn out to be
simple, like the checker board with all
its apparent complexities.” - Feynman




