分子動力學在工程上的應用

主講人:張自恭博士

研究員 國家高速網路與計算中心 南部事業群

Email:changjg@nchc.org.tw, Tel: (06)5050940-707

顯示器科技

http://www.benq.com.tw/news/00/1109 2.htm

•電漿顯示器

電漿顯示器缺點為製作成本高、良率低、亮度 及對比不如CRT、耗能較大、 使用壽命少於 CRT,最大的缺點是售價一直無法大幅下降, 業者目前的理想價位 期望能降低至每吋約新台 幣2,500元,與現在價格相差約3倍,想要達到 恐非易事,且讓我們拭目以待。

有機發光二極體

- 紅藍綠三個畫素需要不同驅動電壓、<u>色彩</u> 平衡性較差及精細度有待加強。
- 為朝大尺寸面板發展會產生耗電遽增、壽 命降低及顯示元件劣化等現象。
- •產品壽命短、成本較高及耗電量較大

液晶顯示器LCD AD.1970~

電漿顯示器PDP AD.1990~

有機發光二極體OLED AD.1998~

平面顯示器

http://www.missioncreep.com/tilt/television.html

http://www.selectronic-uk.com/organic.htm

- 何謂背光模組?
 - 因LCD為非自發光材料,所以需額外之供應光源。
 - 光源一般位於液晶裝置之後,又稱背光模組(backlight system)

Source: http://www.chipcenter.com/circuitcellar/june01/c0601rr1.htm

背光模組介紹

- ▶ 依光源種類可分為
 - ■CCFL背光模組
 - ■LED背光模組
- 依光源位置可分兩種形式
 - CCFL直下式(bottom lighting)
 CCFL邊光式(edge lighting)

National Center for High-Performance Computing South Region Office

□LED邊光式(edge lighting)

導光板

-10-

黄色螢光粉

Pattern 發光量測 光源:紅外線pointer,傾斜入射

增亮膜

• DVD顯示背光板

LED背光模组

LED

背光模組設計之挑戰

- 邊光式背光模組設計之挑戰
 - 照明面積小,均匀度要求高

導光光學原理

Basic optical principle of lightguide

Law of reflection

 $\theta_i = \theta_r$

- Snell's law of refraction

Total internal reflection
 – Snell's law of refraction

$$n_i \sin \theta_i = n_t \sin \theta_t$$

or $\sin \theta_i = \frac{n_t}{n_i} \sin \theta_t$

- If
$$n_i > n_t$$
, $\theta_t > \theta_i$, when $\theta_t = 90^\circ$,
 $\theta_i = \theta_c$, so-called critical angle

$$\theta_c = \sin^{-1} \left(\frac{n_t}{n_i} \right)$$

- i.e., when $\theta_i > \theta_c$, total internal reflection occurs, no transmitted ray

- Example
 - For glass n=1.5, so

$$\theta_c = \sin^{-1} \left(\frac{n_a}{n_g} \right) = \sin^{-1} \left(\frac{1}{1.5} \right) = 41.8^{\circ}$$

FIGURE 4.53 Total internal reflection.

Methods of frustration TIR -lightguide design basic principal

• Diffuser dot

背光模組最佳化設計

- 背光模組光學設計
 你將遇到之問題
- ■全尺寸分析
 - ■百萬級之網點數
 - 需要多少計算時間?
 - •如何建立百萬級之網點外型?
- ■網點大小之調整與最佳化問題■到底可以做多微細之調整?

•最佳化分析實例

入口處網點大小等高線圖

LED背光模組之最佳化設計

DEELL

最佳化網點分布

Dot radius (mm)

В

91.32

93.795

Α

93.798

92.569

3

2

1

С

97.964

92.852

0.2

0.18

0.16

0.14

0.12

0.1

0.08

-40-

0.25

► X

• Other 1LED backlight

亂數網點 (大小固定,位置不固定)

- 亂數排列運算法則
 一分子動力學法
 - »將網點(或微結構)視為原子,利用原子相吸 及相斥原理達到均匀之亂數排列

$$m\frac{d^2\mathbf{r}_i}{dt^2} + c\frac{d\mathbf{r}_i}{dt} = \sum_j^n \mathbf{f}_{ij}(r_i, r_j)$$

其中
$$\mathbf{f}(r_{ij}) = \frac{\mathbf{r}_{ij}}{r_{ij}}e^{-(r_{ij}c_{kl})}$$

$$c_{kl} = \frac{-\ln f_{re}}{r_{cut,kl}}$$

• 網點間作用力與距離之關係

-44-

- 細胞技巧(cell technique)
 - 將分析遇區分成許多細胞(cell)

Original domain					0 0	0	0 0	0	0	0 0	0	0 0	0	0 0	0	0	0 0
0 0		0	С	0 0	00	o	0 0	0 0	0		0	0	0	0	0000	0	0
0	0	0	0	0	(k, l+1) 0 0	0	0	0	c	8	0 0	0	0	0 0	0	8	0
0	С	0	0	0 0	Cell k, l	(k+ 0	+ <i>1, 1)</i> 0 0	00	0	0 ⁰ 0	° o	00	0 0	0 0	0 0	0 0	0
0	С	0	0	0	00	0	0 0	00	0	S	0	0 0	00	0	000	S	°0

- 範例: 排列位置之調整

-CCFL 背光板網點分佈

- LED 背光板網點分布(1)

-49-

- LED 背光板網點分布(2)

- LED 背光板網點 分布(2)

- 上述演算法之缺點為
 - 網點會由密度高之cell 往密度低之cell 跑
 - 無法針對特定區cell做單一之網點密度修正
- 針對上述缺點
 一反射性邊界條件 (reflective boundary condition)

◄······● anticipated path
◄····● real path

亂數網點演算法之定量分析

Computer Physics Communication, 2007 (in press)

Original dom			nain	0	0	0	0 0	0 0	0	0 0	0 0	0 0	0	0 0	с о	0	0 0	
0 0		0		0 0	0	0	o	0 0	0	0	0	0	0 0	0 0	0	000	0	0
0	0	0	0	0	(k, 0	<i>l+1)</i> 0	0	0 0	0	c	8	0	0 0	0	0	o c	Q	, o
0	0	0	0	0 0	$\begin{bmatrix} - & \mathbf{C} \\ & \mathbf{k} \end{bmatrix}$	ell :, <i>l</i>	(k- 0	+ <i>1, 1</i>) 0 0	00	0	0 0	0	0 0	0 0	0 0	000	00	о О
0	0	0	0	0 0		0	0	0 0	00	0	g	°0	0 0	00	0	000	δ	°0

• Uniformity

$$\left(T_{N}^{(k)}\right)^{2} = \frac{1}{N^{2}} \sum_{n=0}^{N-1} \sum_{m=0}^{N-1} \prod_{i=1}^{k} \left(1 - \max\left(x_{n}^{(i)}, x_{m}^{(i)}\right)\right) - \frac{2^{1-k}}{N} \sum_{n=0}^{N-1} \prod_{i=1}^{k} \left(1 - \left(x_{n}^{(i)}\right)^{2}\right) + 3^{-k}$$

dot distributions obtained by MD scheme for simulation domains containing 1000 dots in 25 cells with reflective boundary condition (upper). Note bottom panel shows initial random dot distribution before force regulation process.

dot distributions for cells containing 10 dots with dot density of 0.640 (upper) and cells containing 150 dots with dot density of 0.614 (lower).

(a) fixed r-cut value

(b) predefined r-cut value

(c) variable r-cut value

• 亂數網點光學設計流程

- 特定區域之網點修正

 \circ

Ć

Q

С

C

C

о

整合亂數網點排列演算法及光 學設計

Journal of Optical Society American, A, 24, 839, (2007)

- 光學設計最佳化法則

$$E_{av} = \frac{\sum_{k,l=1}^{n',m'} E_{kl}}{n' \cdot m'}$$

$$E_{kl} = D_{kl} \cdot \frac{A_{cell}}{\pi r^2} \cdot E_{dot} \qquad \left(m_{kl} = D_{kl} \cdot \frac{A_{cell}}{\pi r^2}\right)$$

$$\Delta D_{kl} = \frac{\pi r^2}{A_{cell}} \cdot \frac{E_{av} - E_{kl}}{E_{dot}} = D_{kl} \left(\frac{E_{av}}{E_{kl}} - 1 \right)$$

$$\overline{D}_{kl} = D_{kl} + \Delta D_{kl} = D_{kl} \cdot \frac{E_{av}}{E_{kl}}, \quad \overline{m}_{kl} = m_{kl} + \Delta m_{kl} = m_{kl} \cdot \frac{E_{av}}{E_{kl}}$$

$$U(\%) = 100 \cdot \frac{\min(E_{kl})}{\max(E_{kl})}$$

(b)

-68-

・最後照度(illumination)

$$L_{0,ij} = -\frac{4}{\sqrt{2} \cdot \pi^{3/2}} \cdot \frac{1}{\sigma \cdot e^{-2\sigma^2}} \cdot \frac{1}{\left[\operatorname{Erfi}\left(\frac{2\sigma^2 + i\theta}{\sqrt{2}\sigma}\right) - \operatorname{Erfi}\left(\frac{-2\sigma^2 + i\theta}{\sqrt{2}\sigma}\right)\right]_0^{\pi/2}} \cdot \frac{\Phi_{ij}}{A_{ij}}$$

• 雙面背光模組

主屏

LED 雙面邊光式背光模組

雙面背光模組等密度網點分佈之光學模擬 結果

第一次疊代(等密度) 主屏光學模結果 -15 - 10 - 55 10 -15 0 20 15 10 5 Y (mm) ()-5 -10-15-20

第一次疊代(等密度)

副屏光學模結果

-71-

第二次疊代網點分佈圖及 主副屏光學模結果

主屏

達成設計需求之雙面導光板網點分佈 (疊代11次)

-73-02, 2006

• Illumination 分佈

Illuminance Chart

X (mm)

0

5

10

-5

達成設計需求之主屏光學模擬結果 (疊代11次)

間距可調式亂數微結構排列方 法

• 可調式力場

• 橢圓力場方程式

$$\theta' = \theta - \Delta \Theta$$

 $\theta = \tan^{-1} \left(\frac{y_j - y_i}{x_j - x_i} \right)$
 $x'_e = r_{cut_x} \cos \theta'$ $y'_e = r_{cut_y} \sin \theta'$
 $\begin{bmatrix} x_e - x_i \\ y_e - y_i \end{bmatrix} = \begin{bmatrix} \cos \Delta \Theta & -\sin \Delta \Theta \\ \sin \Delta \Theta & \cos \Delta \Theta \end{bmatrix} \cdot \begin{bmatrix} x'_e \\ y'_e \end{bmatrix}$
 $r_{cut_e} = \sqrt{(x_e - x_i)^2 + (y_e - y_i)^2}$ $r_{ij} = \sqrt{(x_j - x_i)^2 + (y_j - y_i)^2}$

 $\mathbf{f}(r_{ij}) = \frac{\mathbf{r}_{ij}}{|\mathbf{r}_{ij}|} e^{-(r_{ij}c_{kl})} \qquad c_{kl} = \frac{-\ln(f_{re_x}\cos\theta' + f_{re_y}\sin\theta')}{r_{cut_e}}$

-77-

• r-cut 求法

$$r_{cut_x} = \sqrt{\frac{A_{cell}}{m_{kl} \cdot \pi \cdot ell_r}}$$

$$r_{cut_y} = \sqrt{\frac{A_{cell} \cdot ell_r}{m_{kl} \cdot \pi}}$$

$$r_{cut_y} = ell_r \cdot r_{cut_x}$$

- 非等向力場之排列


			~~~~													-							
	$\diamond$	$\diamond \diamond$	$\diamond^{\diamond} <$	$\diamond \diamond$	$\diamond$	$\diamond$	$\diamond$	$^{\diamond}$	$^{\diamond}$	$\diamond$	$\diamond$	$\Diamond$	$\Diamond$	$\Diamond$	$\Diamond$	$\langle \rangle$	$\supset \Diamond$	$\bigcirc$	$\bigcirc$	~	0	$\bigcirc$	$\Diamond$
	$\diamond$	$\diamond$	$\diamond$	$\diamond$	. ♦	$\left  \right\rangle$	٥Ì	$\diamond$	$\sim$	$\rangle \diamond$	$\diamond$	$\Diamond$	$^{\diamond}$	$\Diamond$	$\circ_{\circ}$	0	$\Diamond$	20	, 0			00	2
	$\wedge$	$\circ$	$\diamond$	¢Ľ	$\diamond$	Ň	$\sim$	, 	$\sim$	$\sim$	$\sim$	0 <	> _<	>_	٥	$\sim$	$\sim$	0	24	7~	0		0
	~	$\sim$	$\langle \circ \rangle_{c}$	$\sim$	~		$\stackrel{\sim}{\diamond}$	~	ò,	$\sim$	. ~	$\overset{\sim}{\diamond}$	$\sim$	Q	$\Diamond$	्र	$, \sim$	0	0	4	~ <	54	
	$\sim \diamond$	$\sim$	$\langle \diamond \rangle$	$\langle \diamond \rangle$	$\sim$		$\diamond$	~.	$\diamond$	$\sim$	$\sim$	$\delta^{\prime}$	>~	$\Diamond$	$\diamond_{c}$	$\langle \diamond \rangle$	$\langle \diamond \rangle$		~ Q	4		24	.~
	$\diamond$	$\diamond \diamond$	$\diamond$	° ⊳ ′	$^{\diamond}$	$\diamond$	$\diamond$	$\sim \circ$	$\rangle \diamond$	$\sim$	$^{\prime}\diamond$	$\sim$	$\sim$	$\diamond$	$\diamond$	$\diamond$	$^{\prime}$	0	$\bigcirc$	$\bigcirc$	00	$\sim$	$^{\circ}\phi$
	$\diamond$	$\diamond \diamond$	$\diamond$	$\diamond \diamond$	Ó	$\diamond$	$\diamond$	$\sim$	$\diamond$	$\diamond$	$\diamond$	$\Diamond$	$\overline{\diamond}$	$\Diamond$	$\Diamond$	$\diamond$	$\Diamond$	$\Box$	$\bigcirc$	$\bigcirc$	$\bigcirc$	0	$\Diamond$
Ī	00		70	0	D			7	0	ם כ						$\Box$							
Į	00		5	0	70				00		Π	Π	<u> </u>								П		1
	00		24	70	`	7 0				Π	7	Π		- J	_ []					П	-		
	$\Box$	00	, 4 1	70	4						4	L	נו		1			1		ה ה			
	$\Box$	00	$\Box$		70						0	נ		- Ч						П			
	$\Box$	0 0	$\Box$	4	$\Box$			Ū															
	$\Box$	00	0	$\Box$	$\Box$		$\Box$	$\Box$															
İ																							
					П						_				-	٦ _		П					
																	-	-		ц - Г	Ц ] п		_
										, D							ב		Ц П.				
																ц 7 –							
										, o					Π,	- L П			1 []				
1			Π	ΠĽ		D	Π	Π		'nD	D	D	0	D	Dr	30		0	D	D	0,	20	Ø
	ΠĽ		ם נ	л г П			D		1	D.		D		D	0,	27		5	Ø	0	20	0	0
	20				בר	D			7	_ [	]	C	5	D	D	0		5	5	7 01	ت ر	30	2
ł											D		3	0 6	50	<u>م</u> ر	5		20	20	5	D	5
							L]	D	L L	L]	D	D	D	D N	D	D	D	0	D	Ø	00	. 0 .	50
	- 1		- 1	1 ~		1	DI	JU	~~	71	- ~		Π		D	D	D	0	~	Δ.	. 0	DY	· _
	П			L	~	4		1	L	5	5	~	~	D	<	1 -	~	l -	V	~ <	5 ~	5	



• 範例

### - 光學結合網點排列





lluminance-		
Min	318.957	Lux
Max	6802.100	Lux
Average	1339.869	Lux
Fotal Flux-		
Units	Lumen	
ncident	0.997	Lume
		6802 6082 5361 4641 3921 3200 2480 1760 1039 319



X (mm) = -0.422778, Y (mm) = -0.372381, Value = 1344.13

Α



#### В



#### С



#### D

Ε



## F









X (mm) = 0.140926, Y (mm) = 0.223429, Value = 1847.12











D

Ε



# Ōſ 1001 , 0000 , 0000 , 0000 , 0000

F



- 實質效應
  - 縮短開發時程
    - 減少試誤法及後製所浪費之時間
  - 簡省金錢
    - •時間就是金錢(無法接單更是一大損失)



# Thank you!

